Public health I.

- Course Requirements
- Homepage: www.nepegeszsegtan.sote.hu

Head of the department:
Prof. Dr. Károly Cseh
English tutor:
Dr. András Terebessy
Room: XIII. floor 1307.
Tel: 56313 ext.
Mobile: 208250591
Email: terand@net.sote.hu

Preventive medicine and public health

The science and the art of preventing disease, prolonging life, and promoting physical health and efficiency through organized community efforts for the sanitation of the environment, the control of community infections, the education of the individual in principles of personal hygiene, the organization of medical and nursing service for the early diagnosis and preventive treatment of disease, and the development of the social machinery which will ensure to every individual in the community a standard of living adequate for the maintenance of health.
(C-E. A. Winslow, 1920.)

A definition of public health
-The combination of science, practical skills and values (or beliefs) directed to the maintenance and improvement of the health of all the people... a set of efforts organized by society to protect, promote and restore the people's health through collective or social action.
-John M. Last
-Public Health and Preventive Medicine

Main functions of public health

1. Monitoring the health status of the population, detecting high risk communities/persons, defining health priorities.
2. Development of public health measurements together with political and NGOs for repairing health problems.
3. Ensure health services (including health promotion and disease prevention) to be appropriate, cost-effective and accessible for all members of the population.

Tasks of public health

1. Continuous monitoring of the health status of the population, detecting health problems and health hazards.
2. Exploring the background of health problems.
3. Communications of health problems and its prevention/treatment possibilities with the population.
4. A társadalom mozgósítása a problémák megoldása érdekében, partnerség kialakítása az érintett kormányzati és civil szervezetek között.
5. Development of health promotion and disease prevention programs.
6. Support for health-oriented decision making and evaluation of it.
7. Support for desining health services and encure the general accessibility.
8. Graduate and postgraduate education of human resorces in public health.
9. Analyzing the effectivity and accessibility of health services.
10. Desining and implementing scientific researches for public health problems.

Public health cycle

I. Characteristics of the health status of the population and factors influencing the health status.

Efficiency analysis
III. Planning, organization and implementation of health promotion/disease prevention programs

Oppurtunity analysis

Demography

Demography

The study of populations, especially with reference to size and density, fertility, mortality, growth, age distribution, migration, and vital statistics and the integration of all these with social and economic conditions. (Last)

Demography

Status of population
(number, structure)

- age
- sex
- education level
- income
- households, family
- urbanisation
- public utilities
- information on the home and it's facilities
- ethnicity

Vital statistics

- births (natality)
- fertility
- deaths (mortality)
- reproduction
- marital status (marriage, divorce)

Numerical changes of population (time-frame, place)

Migration

- Emigration
- Commuters
- Immigration

Sources of demographic data

Structure:

- Census
- Calculation
- Microcensus
(intercensus surveys)

Population dynamic:

- Registration of births and deaths (civil registration
- Location of residence registry
- Immigration registry
- Causes of death - death certificate (ICD)

[^0]
Types of numerical indices used in demography

Demographic structure

Presented as

- sex distribution (females and males) and sex ratio
- population by main age-groups (0-14, 15-39, 40-59, 60-X) and mean age
- female population by main age-groups (0-14, 15-39, 40-59, 60-X) and mean age
- male population by main age-groups (0-14, 15-39, 40-59, 60-X) and mean age
- age structure of population by life-years or five-year age-groups
- age structure of female population by life-years or five-year age-groups
- age structure of male population by life-years or five-year age-groups
- age composition, dependency ratio, ageing index
- Distribution by race, ethnicity

Tables, graphs

Year, day, month	Population number			Population distribution, \%			Number of females per thousand males
	male	female	total	male	female	total	
31 December 1869	2482090	2529220	5011310	49,5	50,5	100,0	1019
31 December 1880	2618954	2710237	5329191	49,1	50,9	100,0	1035
31 December 1890	2965069	3044282	6009351	49,3	50,7	100,0	1027
31 December 1900	3418016	3436399	6854415	49,9	50,1	100,0	1005
31 December 1910	3792344	3819770	7612114	49,8	50,2	100,0	1007
31 December 1920	3874111	4112764	7986875	48,5	51,5	100,0	1062
31 December 1930	4248452	4436657	8685109	48,9	51,1	100,0	1044
31 January 1941	4560875	4755199	9316074	49,0	51,0	100,0	1043
01 January 1949	4423420	4781379	9204799	48,1	51,9	100,0	1081
01 January 1960	4804043	5157001	9961044	48,2	51,8	100,0	1073
01 January 1970	5003651	5318448	10322099	48,5	51,5	100,0	1063
01 January 1980	5188709	5520754	10709463	48,4	51,6	100,0	1064
01 January 1990	4984904	5389919	10374823	48,0	52,0	100,0	1081
01 February 2001	4851012	5349286	10200298	47,6	52,4	100,0	1103
01 January 2002	4836980	5337873	10174853	47,5	52,5	100,0	1104
01 January 2003	4818456	5323906	10142362	47,5	52,5	100,0	1105
03 January 2004	4804113	5312629	10116742	47,5	52,5	100,0	1106
01 January 2005	4793115	5304434	10097549	47,5	52,5	100,0	1107
01 January 2006	4784579	5292002	10076581	47,5	52,5	100,0	1106
01 January 2007	4779078	5287080	10066158	47,5	52,5	100,0	1106
01 January 2008	4769562	5275839	10045401	47,5	52,5	100,0	1106
01 January 2009	4763050	5267925	10030975	47,5	52,5	100,0	1106
01 January 2010	4756900	5257424	10014324	47,5	52,5	100,0	1105
01 January 2011	4743901	5241821	9985722	47,5	52,5	100,0	1105

Age-sex pyramid

Demonstration of the demographic structure of the society.

Horizontal x-axes: the life years of women and men alike. The basic unit of this category may be a single year or groups of more years.

Vertical (value) y-axes: the number of persons of each age group.

Crude Age-Sex Distribution

Two different bar charts

Changing the axes: the vertical one will show the age categories.

Females are traditionally on the right males on the left side.

Creation of Age-Sex Pyramid
MEN
WOMEN

Types of age-sex pyramid

Four general types:

1. stage 1 of expanding (rapid growth)
2. stage 2 of expanding (balanced growth)
3. stage 3 stationary (growing older population)
4. stage 4 contracting (decreasing population)

Age-sex pyramid of the EU-27 countries: changes between 1991 and 2011

Projected changes 2011-2060 of the EU-27 countries

Population pyramid

G.3. A népesség száma föbb korcsoportok szerint (január 1.)* Population number by main age-groups (1 January) *

Aging of population

- Shift toward older ages in the age distribution of the developed countries.
- Ageing is one of the global demographic trends in the 21th century as a result of the decreasing number of younger age cohorts and the prolonged life of older cohorts in the population.
- It has numerous
- socio-economic (aging of labor force, social security systems under pressure) and
- health consequences (global increasing of disease burden).

$$
\text { Ageing index }=\frac{N \text { of persons } \geq 60 \text { years }}{N \text { of persons } \leq 14 \text { years }} \times 100
$$

How much percentage represent the persons ≥ 60 life years if the persons \leq 14 life years are considered as 100 percent in a given population.

Combining the ageing index with socio-economic considerations: cutoff value of 65 life years. (old age retirement)

$$
\text { Ageing inde } x=\frac{N \text { of persons } \geq 65 \text { years }}{N \text { of persons } \leq 14 \text { years }} \times 100
$$

Hungary's population by age groups on January 1, 2012

$0 \leq 14$ years	$1,441,842$
$15-64$ years	$6,835,357$
$65+$ years	$1,680,532$
Total	$9,957,731$

$$
\text { Ageing index }=\frac{1,680,532}{1,441,842} \times 100=116.6 \%
$$

Aging of population

Dependency ratio

- combined demographic index showing the relationship of socioeconomically dependent and independent population.
- Total dependency ratio
- Youth dependency ratio
- Old age dependency ratio

Total dependency ratio $=$ the number of persons ≤ 14 years plus ≥ 65 years divided by the number of persons 15 to 64 years

$$
\text { Total dependency ratio }=\frac{\mathrm{N} \text { of persons } \leq 14+\geq 65 \text { years }}{\mathrm{N} \text { of persons } 15 \text { to } 64}
$$

$$
\text { Total dependency ratio }=\frac{1,441,842+1,680,532}{6,835,357} \times 100=45.7 \%
$$

Aging of population

Youth dependency ratio = the number of persons $0-14$ years divided by persons $15-64$ years

$$
\text { Youth dependency ratio }=\frac{\mathrm{N} \text { of persons } \leq 14 \text { years }}{\mathrm{N} \text { of persons } 15 \text { to } 64 \text { years }} \times 100
$$

$$
\text { Youth dependency ratio }=\frac{1,441,842}{6,835,357} \times 100=21.1 \%
$$

Old age dependency ratio $=$ the number of persons ≥ 65 years divided by persons 15 to 64 years

$$
\text { Old age dependency ratio }=\frac{\mathrm{N} \text { of persons } \geq 65 \text { years }}{\mathrm{N} \text { of persons } 15 \text { to } 64 \text { years }} \times 100
$$

$$
\text { Old age dependency ratio }=\frac{1,680,532}{6,835,357} \times 100=24.6 \%
$$

Population dynamics

- Diversities in demographic situations across countries and regions, as well as within countries.
- There are two driving forces behind these evolving demographic changes
- bio-social phenomena
- birth = natality if related to neonates, fertility if related to mothers
- death = mortality (in scientific terms)
- social phenomena (internal and international migration)

Topics of Demography

Dynamic
Natural Changes

1. Natality and Fertility
2. Mortality
3. Reproduction (aet resalt of matality; fertility and mortality)

Social Changes

Migration
Commuting (time-periode) Local (within a political unit)
Cross-mational (in-, out)

Static

Structural phemomena, e.g.

- age distribution (specific set of years = age cohorts)
- gender ratio (sex ratio)

Population Pyramid or Age-Sex Pyramid

Natality

Birth (by WHO definition 1950) as a natality event means live birth (contrasted to the stillbirth) that occurs when a foetus exits the maternal body and subsequently shows any signs of life as

- heartbeat,
- pulsation of the umbilical cord,
- any voluntary movement

Complete birth is the infant's entire separation from the maternal body (by cutting of the umbilical cord) after 42 completed weeks (294 days) of gestation. Birth in demographic terms may be

- Singleton: one offspring produced in the same gestation period
- Multiple: two or more offspring produced in the same gestation period
- Preterm (PTB): birth of an infant before 37 completed weeks (259 days) of gestation
- Low weight (LBW): the infant's weight is <2500 gram

Natality

Crude birth rate is the number of live births in a year per 1000 of the population. First the total number of live birth is divided by the mid-year population of the referred territorial unit (e.g. Hungary) and the outcome has to be multiplied by 1000.

```
N of live births
    Mid - year population
```

Calculation of Example-country's birth rate: number of live birth $=85,000$ and the mid-year population $=10,000,000$.

$$
\text { Birth rate }=\frac{85,000}{10,000,000}=0.0085 \times 1000=8.5
$$

Basic rule in demography: rates are related at least to one whole person. Thus the outcome has to be multiplied by 1000 to get 8.5. In other words, 1000 persons are producing 8.5 liveborn babies in Hungary in a year.

Natality

Preterm birth (PTB) rate is the number of preterm born infants per 100 live births in a year.

$$
\text { PTB rate }=\frac{\mathrm{N} \text { of preterm births }}{\mathrm{N} \text { of all live births }} \times 100
$$

Calculation of Example-country's PTB-rate

$$
\text { PTB rate }=\frac{7,225}{85,000}=0,085 \times 100=8.5 \%
$$

Low birth weight (LBW) rate is the number of substandard (<2500 gram) weight infants per 100 live births in a year.

$$
\text { LBW rate }=\frac{\mathrm{N} \text { of substandard weight infants }}{\mathrm{N} \text { of all live births }} \times 100
$$

Calculation of Example-country's LBW rate:
$L B W$ rate $=\frac{7,140}{85,000}=0.084 \times 100=8.4 \%$

Fertility

Fertility is a child bearing capacity of the population represented by women between the ages of 15 and 49 years.
Fertility rate is a number of births per 1000 women of specific compositions.

1. General fertility rate,
2. Age-specific fertility rate
3. Total fertility rate

General fertility rate (GFR): number of live births per 1000 women between the ages of 15 and 49 years.

$$
G F R=\frac{N \text { of live births }}{\text { Mid }- \text { year female population aged } 15-49} \times 1000
$$

Example-country's GFR:

$$
G F R=\frac{90,254}{2,374,912} \times 1000=38.0
$$

Fertility

Age-specific fertility rate: number of births to women of a particular age (a year or age group). E.g. females in the age group 20-24 years.

$$
\text { Age }- \text { specific } F R=\frac{\mathrm{N} \text { of live births of mothers aged } 20-24 \text { years }}{\text { Mid }- \text { year female population aged } 20-24 \text { years }} \times 1000
$$

Example-country's fertility rate

$$
\text { Age }- \text { specific } F R=\frac{12,668}{314,375} \times 1000=40.3
$$

Fertility

Total fertility rate (TFR): average number of children a woman would bear during her reproductive lifetime (15-49 years), assuming her childbearing conforms to her age-specific fertility rate every year of her childbearing years.

Computation of total fertility rate, based on Hungary's 2010 data:

	Life year categories						
	$15-19$	$20-24$	$25-29$	$30-34$	$35-39$	$40-44$	$45-49$
N. of children	5220	12668	25090	31489	13438	2271	78
N. of women	287568	314375	335856	401619	388074	346058	301362
Fertility rate	0,02	0,04	0,07	0,08	0,03	0,01	0,00
N. of children/women in five years	0,10	0,20	0,35	0,40	0,15	0,05	0,00

$$
T F R=0,10+0,20+0,350+0,40+0,15+0,05+0,00=1,25
$$

From biological point of view (without concerning migration and at a stable level of mortality) TFR indicates clearly the trend of the human reproduction. The cut value is $T R F=2$, which means that mother and father in the family will be replaced by 2 children.

TFR greater than 2 means growing population
TFR less than $\mathbf{2}$ means decreasing number of the population

A world map showing countries by TFR, from 7-8 children to $0-1$ children

The colour bar indicates TFR 7-8 at the top and TFR 0-1 at the bottom.

Calculation of total fertility rate (TFR)
For 1000 women from age 15 through age 45 years

Age	Births	
15	110	
16	110	
17	110	(average annual fertility
18	110	from ages $15-19=110 / 1000$)
19	110	
20	180	
21	180	
22	180	(average annual fertility from ages $20-29=180 / 1000$
29	180	
30	80	
31	80	(average annual fertility from zoes $30-45=80 / 1000$)
44	80	
45	80	
	3,630	

(This TFR could also be calculated more compactly as
$110 \times 5+180 \times 10+80 \times 16=3,630)$
Note that the TFR is a hypothetical measure based on the assumption that the age-specific fertility rates do not change until the cohort has aged beyond them. The TFR is a projection, not a prediction-essentially, a technique for summarizing a set of age-specific rates into an intruitively meaningful number.

Reproduction ratios

Gross reproduction rate (GRR): The sum of the age-specific female fertility rates (births of daughters), for all reproductive age groups for a particular period (usually a year) conventionally expressed per woman. The GRR indicates how many daughters a woman would have if, throughout her reproductive life, she had children at the agespecific rates prevalent in the specified year of period. The GRR can be calculated either by summing female age specific fertility rates, (relating to births of daughters rather than all births) or using the formula
GRR $=$ TFR \times Proportion of female births
The proportion of female births can be taken as 0.488 (100/205) in the absence of more detailed information.

Net reproduction rate (NRR): The average number of daughters that would be borne, according to specified rates of mortality and of bearing daughters, by a woman subject through life to these rates. The NRR employs the same fertility data as the GRR, but also takes into account the effects of mortality. An NRR of 1 indicates that a population's fertility and mortality levels would result in exact replacement of mothers by daughters.

1.4.1. Élveszületési és termékenységi mutatók Indicators of live birth and fertility

$\begin{aligned} & \text { Év } \\ & \text { Year } \end{aligned}$	Élveszületések száma Number of live births	Teljes termékenységi arányszám Total fertility rate	Reprodukciós együtható Reproduction rates		Ezer - Live births			
					15-49 éves nöre jutó élveszūletés per thousand females aged 15-49	15-49 éves házas nöre házasságbỏl jutó èléveszületés in wedlock per thousand married females aged 15-49	15-49 éves nem házas nöre jutó házasságon kivüli élveszületés out of wedlock per thousand non-married females aged 15-49	15-59 èves házas férfira házasságból jutó èlveszūletés in wedlock per thousand married males aged 15-59
			nyers crude	tisztitott net				
1949	190398	2,54	1,223	1,060	75,4	111,3	16,5	98,9
1960	146461	2,02	0,975	0,917	58,9	78,4	11,0	67,4
1970	151819	1,97	0,953	0,912	56,6	76,1	10,2	68,1
1980	148673	1,92	0,937	0,909	57,6	73,7	14,8	62,3
1990	125679	1,84	0,900	0,889	49,4	67,4	17,7	57,5
2000	97597	1,33	0,643	0,635	38,1	52,1	23,0	42,6
2001	97047	1,31	0,636	0,627	38,1	52,1	23,6	42,3
2002	96804	1,31	0,635	0,626	38,3	52,8	23,9	42,5
2003	94647	1,28	0,617	0,609	37,8	52,5	23,7	41,9
2004	95137	1,28	0,626	0,618	38,4	53,4	24,8	42,0
2005	97496	1,32	0,637	0,630	39,8	56,1	25,8	43,4
2006	99871	1,35	0,659	0,651	41,1	59,0	26,5	44,9
2007	97613	1,32	0,645	0,637	40,5	57,9	26,9	43,5
2008	99149	1,35	0,659	0,652	41,3	58,8	28,3	43,9
2009	96442	1,33	0,645	0,638	40,3	57,7	28,0	43,0

G.16. Teljes termékenységi arányszảm megyénként, 2009

Total fertility rate by counties, 2009

G.13. Ezer megfelelö korủ nöre jutó élveszületés

G.14. A nök átlagos kora gyermekük születésekor

Mean age of females at childbirth

Mortality

Mortality is a relationship of death cases to the whole population.
Two basic types of mortality:

1. General (crude) mortality rate or death rate
2. Specific mortality rates

- Age and sex related (special rates: infant mortality and foetal losses)
- Cause related (diseases, injuries, suicide, homicide)
- Life expectancy (sex and age related)

Crude death rate (or mortality rate) is the number of death cases in a year per 1000 of the population.

$$
\text { Crude Mortality Rate }(C M R)=\frac{N \text { of death cases }}{\text { Mid }- \text { year population }} \times 1000
$$

Calculation of Example-country's CMR: number of death cases $=135,000$ and the mid-year population $=10,000,000$.

$$
C M R=\frac{135,000}{10,000,000}=0.0135 \times 1000=13.5
$$

Mortality

Age and sex related mortality rate: CMRs can be computed for both genders and age groups. The age group under 1 year is separately treated (the infant mortality).

General population between 40-49 years:

$$
C M R_{40-49 \text { years }}=\frac{\mathrm{N} \text { of death cases of the cohort }}{\text { Midyear population of the cohort }} \times 1000
$$

The real number for Hungary of the same cohort was 3.6 in 2011, which means that in every thousand persons aged $40-49$ years died more than 3 in this year.

$$
C M R_{40-49 \text { years }}=\frac{4677}{1,308,882}=0.0036 \times 1000=3.6
$$

Mortality

Female population between 40-49 years:

CMR $R_{\text {Females } 40-49 \text { years }}=\frac{\mathrm{N} \text { of death cases of the cohort }}{\text { Midyear population of the cohort }} \times 1000$
The real number for Hungary of the same cohort was 2.32 in 2011, which means that in every thousand women aged 40-49 years died more than 2 persons in this year.

$$
\text { CMR } R_{\text {Females } 40-49 \text { years }}=\frac{1,508}{564,107}=0.0023 \times 1000=2.32
$$

Male population between 40-49 years:
$C M R_{\text {Males 40-49 years }}=\frac{\mathrm{N} \text { of death cases of the cohort }}{\text { Midyear population of the cohort }} \times 1000$

The real number for Hungary of the same cohort was 4.88 in 2011, which means that in every thousand women aged 40-49 years died nearly 5 persons in this year.

$$
\text { CMR }_{\text {Males } 40-49 \text { years }}=\frac{3,169}{654,715}=0.0048 \times 1000=4.8
$$

Frequency of deaths by age

G.26. Ezer meglelela korú nōre jutò halỉlozàs

Doaths per thousand femaies of comesponding atps

Mortality

Infant mortality rate: is the number of deaths of infants under one year (365 days) old in a given year per 1,000 live births occurred in the same year. This rate is divided up for 4 subgroups and often used as an indicator of the level of health in a country.

Infant mortality rate

Number of infants deceased
Number of infants under 1 year of age

Specific age related infant mortality

1. perinatal mortality within 24 hours

Indicators of the level of health in a country
2. postnatal mortality within the first week of life
3. neonatal mortality - death occuring at 7 to 27 days of life
4. postneonatalmortality - death occuring between 28 and 365 days of life

Mortality

General infant mortality rate

$$
\text { Inf ant Mortality Rate }=\frac{\mathrm{N} \text { of infants died in the first } 365 \text { days }}{\mathrm{N} \text { of infants born in a given year }} \times 1000
$$

Hungary's infant mortality rate was 4.9 in 2011, which means that 5 infants died out of 1,000 prior their first birthday:

$$
\text { Infant Mortality Rate }=\frac{433}{88,049}=0.0049 \times 1000=4.9
$$

Perinatal mortality rate: Separated perinatal mortality (first 24 hours) does not include stillbirths:

$$
\text { Perinatal Mortality Rate }=\frac{\mathrm{N} \text { of infants died in the first } 24 \text { hours }}{\mathrm{N} \text { of infants born in a given year }} \times 1000
$$

Hungary's perinatal mortality rate was 1.0 in 2011, which means that 1 infant died out of 1,000 in the first 24 hours:

$$
\text { Perinatal Mortality Rate }=\frac{92}{88,049}=0.001 \times 1000=1.0
$$

Mortality

Postnatal mortality rate:

$$
\text { Postnatal Mortality Rate }=\frac{\mathrm{N} \text { of infants died in the first } 0-6 \text { days }}{\mathrm{N} \text { of infants born in a given year }} \times 1000
$$

Hungary's postnatal mortality rate was 2.2 in 2011, which means that more than 2 infants died out of 1,000 within the first week of their life:

$$
\text { Postnatal Mortality Rate }=\frac{190}{88,049}=0.0022 \times 1000=2.2
$$

Neonatal mortality rate:

$$
\text { Neonatal Mortality Rate }=\frac{N \text { of infants died between the days } 7-27}{N \text { of infants born in a given year }} \times 1000
$$

Hungary's neonatal mortality rate was 0.9 in 2011, which means that nearly 1 neonate died out of 1,000 between the days $7-27$ of his/her life:

$$
\text { Neonatal Mortality Rate }=\frac{83}{88049}=0.0022 \times 1000=2.2
$$

Postneonatal mortality rate:

$$
\text { Postneonatal Mortality Rate }=\frac{\mathrm{N} \text { of infants died in the days } 28-365}{\mathrm{~N} \text { of infants born in a given year }} \times 1000
$$

Hungary's postnatal mortality rate was 1.6 in 2011, which means that more than 1 infant died out of 1,000 within the days 7-365 of his/her life:

$$
\text { Postneonatal Mortality Rate }=\frac{160}{88,049}=0.0018 \times 1000=1.8
$$

Infant mortality rate

- neonatal (0-27 days)

$$
\begin{aligned}
& \text { early (0-6 days) } \\
& \text { late (7-27 days) }
\end{aligned}
$$

- Post-neonatal (from day 28 - to 1 year)

Infant mortality rate

G.23. Ezer élveszülöttre jutó 1 éven aluli meghalt korcsoportonként Deaths during first year per thousand live births by age-groups

World map of infant mortality rates in 2008

Infant mortality rate

G.24. Ezer élveszülöttre jutó 1 éven aluli meghalt megyénként, 2009 Deaths during first year per thousand live births by counties, 2009

Infant mortality rate by GDR per

capita

Foetal losses (intrauterin deaths)

Infant deaths (extrauterin deaths)

Mortality

Foetal loss is defined as a total sum of foetal death cases and induced abortions.
Foetal death cases may be related to the number of live birth or the number of fertile female population.

N of foetal death cases
 Foetal death rate $=\frac{\mathrm{N} \text { infants born in a given year }}{\mathrm{N} \text { of infan }} \times 100$

Hungary's relevant rate in 2011:

$$
\text { Foetal death rate }=\frac{17,220}{88,049} \times 100=19.6 \%
$$

Abortion is the termination of pregnancy either spontaneous or induced. In demography abortion means induced and legally regulated procedure for termination of pregnancy irrespective of medical or other legal reasons.

Numbers and Rates:
Global and regional estimates of induced abortion, 1995, 2003 and 2008

Region	No. of abortions (millions)			Abortion rate*		
	1995	2003	2008	1995	2003	2008
World	45.6	41.6	43.8	35	29	28
Developed countries	10.0	6.6	6.0	39	25	24
Excluding Eastern Europe	3.8	3.5	3.2	20	19	17
Developing countries	35.5	35.0	37.8	34	29	29
Excluding China	24.9	26.4	28.6	33	30	29
Africa	5.0	5.6	6.4	33	29	29
Asia	26.8	25.9	27.3	33	29	28
Europe	7.7	4.3	4.2	48	28	27
Latin America	4.2	4.1	4.4	37	31	32
North America	1.5	1.5	1.4	22	21	19
Oceania	0.1	0.1	0.1	21	18	17

*Abortions per 1,000 women aged 15-44.
Source: Sedgh G et al., Induced abortion: incidence and trends worldwide from 1995 to 2008, Lancet, 2012 (forthcoming).

Induced abortion in Hungary, 1957-2011

1.6. Magzati veszteségek Foetal losses

Megnevezés Denomination	1970	1980	1990	2000	2008	2009
Korai és középidős magzati halálozások száma Number of early and midterm foetal deaths	29837	19972	17596	14923	17283	17366
Késöi magzati halálozások száma Number of late foetal deaths	1520	1156	699	538	431	519
Összes magzati halálozások száma Total number of foetal deaths	31357	21128	18295	15461	17714	17885
Terhességmegszakitások száma Number of induced abortions	192283	80882	90394	59249	44089	43181
Ezer 15-49 éves nőre jutó magzati veszteség Foetal losses per thousand women aged 15-49 years old	83,4	39,6	42,8	29,2	25,8	25,6
Száz élveszületésre jutó magzati veszteség Foetal losses per hundred live births	147,3	68,6	86,5	76,6	62,3	63,3
Ezer 15-49 éves nöre jutó terhességmegszakitás Induced abortions per thousand women aged 15-49 years old	71,5	31,4	35,6	23,2	18,4	18,1
Száz élveszületésre jutó terhességmegszakítás Induced abortions per hundred live births	126,7	54,4	71,9	60,7	44,5	44,8

\square Terhesség-megszakítások száma 100 élveszületésre
—Élveszületések száma

- Terhességmegszakítások száma

Number of induced abortions per hundred live births

- Number of live births
- Number of induced abortions

Foetal losses, 2009.

Number of early and midterm foetal deaths: 17366
Number of late foetal deaths: 519
Number of foetal deaths per hundred live births: 18,5
Number of induced abortions: 43181
Number of induced abortions per hundred live births: 44,7
Total number of foetal losses: 61066
Number of foetal losses per hundred live births: 63,3
Number of conceptions: number of live births(96442)+ number of foetal losses(61066) $=157508$
61,2 \%
Number of deaths: 130414

Mortality

Maternal mortality

- special case of sex-related mortality.
- Represents death cases of women who die during pregnancy and childbirth inclusive the first 42 days after the delivery (WHO definition).
- The number per year is relatively small (developed countries), thus maternal mortality rate is computed per 100,000 live births.
- $\sim 11 / 100,000$ in the developed countries.

N of maternal deaths
 Maternal mortality rate $=$
 N of infants born in a given year

Mortality

Cause related mortality

Demography is concerning only the main types of diseases, motor vehicle accidents and suicide (homicide).

Causes of death

G.34. Százezer férfira jutó halálozás kiemelt halálokok szerint Deaths per hundred thousand males by selected causes of death

Megjegyzés: A Belegsêgek Nemzelköà Osztályozása X. Revizioja szerint. 1964-ben a mápetegségek csak a mązsugorodeds adatait tartaimazzâk.
Az európai népesség kormegoszására standardizall ardinyszámok.

Causes of death

G.35. Százezer nöre jutỏ halálozás kiemelt halálokok szerint Deaths per hundred thousand females by selected causes of death

Life expectancy

Life expectancy:

the average number of years an individual of a given age is expected to live if current age-specific mortality rates continue to apply. Every cohort had different experiences in its earlier life that might have influenced its mortality rate in a given year.

Life expectancy at birth:

Average number of years a newborn is expected to live if current mortality structure persists throughout its life.

Because of the gender difference, life expectancy is calculated also separately for men and women.
Life expectancy is a hypothetical measure and indicator of current health and mortality conditions.

Life expectancy data at birth in the 27 EU member countries and non-member countries from 1980 to 2011

	Total						Men						Women					
	1980	1990	2000	2009	2010	2011	1930	1990	2000	2009	2010	2011	1980	1990	2000	2009	2010	2011
EU-27				79.7						76.7						82.8		-
Beigium	73.3	76.2	77.9	80.1	803	3	69.9	72.7	74.6	77.3	77.6	\%	76.7	795	810	88.8	83.0	!
Bulgaria	71.1	712	71.6	73.7	73.8	742	68.4	68.0	68.4	70.1	70.3	70.7	739	74.7	75.0	77.4	774	778
Czech Republic	70.4	71.5	751	77.4	77.7	780	669	67.6	71.7	74.2	74.5	748	740	75.5	78.5	80.5	80.9	81.1
Denmark	742	749	76.9	79.0	793	79.9	71.2	72.0	74.5	76.9	77.2	778	77.3	778	792	81.1	81.4	819
Germany	73.1	75.4	78.3	80.3	80.5	80.8	69.6	72.0	75.1	77.8	78.0	78.4	762	78.5	812	82.8	83.0	832
Estonia	-	69.9	70.8	752	76.0	76.5		64.7	65.2	69.8	70.6	712	!	74.9	762	80.2	80.8	81.3
Ireland	-	74.8	78.6	79.9	810	80.6	-	72.1	74.0	77.4	78.7	78.3		77.7	79.2	825	83.2	82.8
Greece	75.3	77.1	78.0	80.2	806	80.8	73.0	74.7	75.5	77.8	78.4	78.5	77.5	79.5	80.6	82.7	82.8	83.1
Spain	75.4	77.0	79.3	81.9	823	825	723	73.4	75.8	78.7	79.1	79.4	78.4	80.6	32.9	'84.9	85.3	85.4
France (1)	.	770	79.2	81.6	81.9		728	75.4	753	78.0	78.3			812	83.0	85.0	65.3	
Italy	3	77.1	79.9	821	,	-	-	738	76.9	79.4	-			80.3	. 82.8	84.6	.	:
Cyprus	\pm	-	77.7	81.1	815	812	\pm	.	75.4	78.6	79.2	79.3	+	.	30.1	83.6	83.9	83.1
Latvia	-	-	?	73.3	73.7	739	,	;		68.1	68.6	68.6	\%	\cdots		78.0	78.4	78.8
Lithuania	70.5	71.5	722	732	735	73.8	65.4	66.4	66.8	67.5	68.0	68.1	75.4	763	77.5	78.7	789	79.3
Luxembourg	728	75.7	780	80.8	808	81.1	70.0	72.4	74.6	78.1	77.9	785	75.6	78.7	81.3	83,3	83.5	836
Hungary	69.1	694	71.9	74.4	747	75.1	65.5	652	675	70.3	70.7	712	728	73.8	762	78.4	78.6	787
Malta	70.4	\%	78.4	80.3	81.4		68.0		762	779	792	+	728	-	30.3	827	83.6	1
Fetherlands	-	77.1	782	80.9	810	81.3	,	738	75.6	787	78.9	79.4		802	80.7	82.9	83.0	83.1
Austria	72.7	75.8	78.3	80.5	80.8	81.2	690	72.3	75.2	77.6	77.9	783	76.1	790	812	83.2	83.5	83.9
Poland		70.7	73.8	75.9	76.4	76.9		66.3	69.6	71.5	72.1	72.6		75.3	78.0	80.1	80.7	81.1
Portugal	71.5	74.1	76.7	79.6	798	80.9	67.9	70.6	732	76.5	76.7	77.6	74.9	77.5	80.2	82.6	82.8	84.0
Romania	69.2	69.9	712	73.5	73.8	74.6	66.6	66.7	67.7	69.8	70.1	71.0	71.9	73.1	74.8	77.4	77.6	78.2
Slovenia	:	73.9	76.2	79.4	79.8	80.1		69.8	722	75.9	76.4	76.8	\%	77.8	79.9	82.7	83.1	83.3
Slovakia	70.4	71.1	73.3	75.3	75.6	76.1	66.7	66.7	692	71.4	71.7	723	74.4	75.7	77.5	79.1	79.3	79.8
Finland	737	75.1	77.8	80.1	802	80.6	69.2	71.0	74.2	76.6	76.9	77.3	780	79.0	812	83.5	83.5	83.8
Sweden	75.8	77.7	79.8	81.5	81.6	819	72.8	74.8	77.4	79.4	79.6	79.9	79.0	80.5	820	. 83.5	83.6	83.8
United Kingdom	75.8.	!	78.0	805	807		7	3	75.5	78.3	78.7	-		S0.5	80.3	82.5	82.6	-3.
Iceland	76.8	78.1	797	818	81.9	82.4	735	75.5	77.8	79.8	79.8	80.7	80.4	30.7	81.6	83.8	84.1	84.1
Liechtenstein	-	,	770	81.7	818	819	-	-	73.9	79.5	79.5	795	-	-	79.9	83.6	843	84.2
Horway	75.8	76.6	78.8	81.0	812	814	72.4	73.4	760	787	790	79.1	79.3	79.9	81.5	.83.2	83.3	83.6
Switzerland	75.7	77.5	800	823	826	828	723	74.0	77.0	79.9	802	805	79.0	80.9	828	84.6	84.8	850
Montenegro	\square	:	-	753	759	.	.	.	\square	72.9	73.5	-	79.	.	.	. 77.6	78.4	.
Croatia	-	:	3	76.4	76.8	it	:	L	+	73.0	73.5	-	:	,	:	79.7	79.9	\square
FYR of Aacedonia	2	:	73.0	74.4	750	75.1	:	$\stackrel{1}{2}$	70.8	723	729	731	+	i	752	76.7	77.2	772
Turkey	2	-	!	76.0	!	:	-	-	-	73.3	:	-	!	\cdots	,	78.8	-	+172

(1) Excluding French overseas departments before 1991

Source: Eurostat (online data code: demo_miexpec)

Life expectancy

G.31. A férfiak és a nők születéskor várható élettartama

Life expectancy of males and females at birth

Life expectancy

Population growth

Crude birth rate (CBR): The ratio of births in a year (other specified period) to the average population in the same year/period (mid-year population), expressed per 1000
$\mathrm{CBR}=\frac{\text { number of births }}{\text { mid- } \text { year population }} \times 1000$

Crude death rate: The ratio of deaths in a year (other specified period) to average population in the same year/period (mid-year population), expressed per 1000
$C D R=\frac{\text { number of deaths }}{\text { mid-year population }} \times 1000$

Population growth

PG=CBR-CDR

+ natural increase
- natural decrease

G.5. Ezer lakosra jutó élveszületés és halálozás

Live births and deaths per thousand population

G.8. Ezer lakosra jutó èlveszületés megyėnkėnt, 2009

Live births per thousand population by counties, 2009

G.9. Ezer lakosra jutó halálozás megyénként, 2009

Deaths per thousand population by counties, 2009

G.10. Ezer lakosra jutó természetes szaporodás, fogyás megyénként, 2009

Natural increase, decrease per thousand population by counties, 2009

Demographic transition

1944. F. W. Notenstein: american demographer; created the theory of demographic transition as it is accepted even today.

- A scientific model presenting the transition from high mortality and high fertility to conditions of low mortality and low fertility.

Last 300 years, the western type industrial revolution.

Death rates were reduced: better and regular food supplies, improved sanitations (water supply, sewage systems and waste management) medical knowledge and care.
Later, birth rates also begin to fall. Delayed response of the birth rate: social response.

Death rates are open ended, birth rates were high.

Demographic transition

The modern demography is using five stages of the demographic transition:

1. Total population is low, however in a balanced state because high death rates are compensated by high birth rates.
2. Total population rises rapidly (population explosion) as death rates fall due to economic development, improvements in health care and sanitation, but parallel the birth rates remain high.
3. The rise of the total population becomes moderate, the gap between birth and death rates narrows (decreasing need of working force, emerging new family patterns, availability of contraception)
4. Total population is levelled off high, but it is balanced by a low birth rate and a low death rate. Birth control is generally accepted
5. Birth rates may drop below replacement level. Start of the decline of the total population by ageing. People opting to have children later in life, leading to a shrinking population.

Demographic transition

Projected population growth of the world 1997-2015

Hungary's projected population by six variants 2001-2050

Migration

Number of inhabitants in a given territorial unit depended not only on the balance of birth and death cases but also that of the migration (immigrants and emigrants).

Migration is change of residence by leaving (emigration) or entering (immigration) a specific territory as

- voluntary (by own deliberation of moving persons e.g. colonization, tourism, workforce) or
- involuntary (forced) migration (by factors outside of deliberation of moving persons as expulsion \rightarrow refugees, or transportation \rightarrow slave trade, holocaust in the WWII)

The World's net migration rates for 2008: positive balance (blue), negative balance (orange), unchanged (green), and no data (gray)

Main demographic data

200020072009

Per 1000

Live births	9,6	9,7	9,6
Deaths	13,3	13,2	13,0
Marriage	4,7	4,1	3,7
Divorce	2,3	2,5	2,4
Infant mortality rate(per 1000 live births)	9,2	5,9	5,1
Total fertility rate	1,33	1,32	1,33
Life expectancy at birth	71,3	73,3	74,03
Male	67,1	69,2	70,05
Female	75,6	77,3	77,89

Demographic data 2009.

- Population (2010.01.01.)
- Life expectancy at birth:
- Live births:
- (Crude) birth rate:

10014000

- Induced abortions:

Male:	70,05 év
Female:	77,89 év

- Deaths:

130414

- (Crude) mortality rate:

13,0/1000

- Infant mortality rate:

5,1/1000

Causes of death, 2009.

(ICD.)

Cardiovascular diseases
Cancers
Diseases of digestive organs
Diseases of respiratory system
Accidents
Suicide
Communicable diseases
Egyéb

64921 (49,8\%)
33174 (25\%)
8217
6466
4401
2461
493
$\underline{10281}$
г:130414

Comparing population figures I.

Plain numbers: Is marriage bad for your health?

Deaths in men aged 46-69 by marital status in the National Longitudinal
Mortality Study between 1979 and 1983

Comparing population figures II.

Death rates: Is marriage bad for your health?

Death rate among men aged 46-69 involved in the study

Milven ténvezők befolvásolhatiák a populációs összhalálozást? Általános és (réteg)specifikus mutatók

Comparing population figures III.

Death rates: Mexico \& Sweden

1995	$\underline{\text { Mexico }}$	$\underline{\text { Sweden }}$
Average life expectancy at birth:	$72,6 \mathrm{yrs}$.	$79,0 \mathrm{yrs}$.
Infant mortality:	33%	$4 \% 0$
Gross domestic product per cpta. (GDP):	$\sim 2700 \$$	$\sim 26000 \$$
\% GDP spent on healthcare:	$5,6 \%$	$8,1 \%$
Population living with sanitary facilities:	70%	100%
WHICH COUNTRY WOULD YOU EXPECT TO HAVE HIGHER MORTALITY?		
Mortality:	$\underline{\mathbf{4 , 7 2} / \mathbf{1 0 0 0} \text { pers.! }}$	$\underline{\mathbf{1 0 , 6 1 / \mathbf { 1 0 0 0 }} \mathbf{~ p e r s . !}}$

Comparing stratum-specific death rates

The role of age in comparing Mexico \& Sweden

Age	Mexico			Sweden		
	Population	Deaths	Mortality	Population	Deaths	Mortality
0-29 yrs	60198200	99542	1,7\%	3385000	1387	0,4 \%
$30-59 \mathrm{yrs}$	25172800	101884	4,1 \%	3497100	8304	2,4 \%
$60+\mathrm{yrs}$	5774500	228675	39,6\%	1944900	83950	43,2 \%
Total	91154500	430101	4,7\%	8827000	93641	10,6

How do stratum-specific death rates of the two countries compare to each other? WHICH COUNTRY HAS MORE FAVOURABLE MORTALITY?!?

How do stratum-specific death rates determine overall death rates?
The population distribution of Mexico \& Sweden

Standardization

„.... a set of techniques used to remove as far as possible the effects of differences in age or other confounding variables when comparing two or more populations"

Last 1995

In case of standardization of CMR values, it means to use a common age distribution pattern for re-computing crude mortality rates to get SMRs or age adjusted mortality rates.

City A $=2000$		City B $=2000$	
0-50 yrs	51-yrs	$0-50$ yrs	51-yrs
1500	500	500	1500
9	10	3	30
19 Death	out of 2000	33 Death	out of 2000
19		33	
2000		2000	
CMR =	9.5%	CMR =	6.5%

Direct age-standardization

Correcting for varying age-distribution of populations
Basic question: what would mortality figures in the two countries be if BOTH COUNTRIES HAD THE SAME AGE-DISTRIBUTION \& THEIR ORIGINAL STRATUM SPECIFIC MORTALITY RATES?

Same age distribution (STANDARD POPULATION - WHO 2000):

Age group	Population proportions	In case of 100000 persons
$0-29 \mathrm{yrs}$	51%	51000
$30-59 \mathrm{yrs}$	37%	37000
$60+\mathrm{yrs}$	12%	12000

Age group	Mortality - Mexico	
$0-29 \mathrm{yrs}$	$1,7 \%$	
$30-59 \mathrm{yrs}$	$4,1 \%$	$0,4 \% 0$
$60+\mathrm{yrs}$	$39,6 \%$	$2,4 \% 0$
		$43,2 \% 0$

Cases in which direct standardization is not applicable...

 Indirect standardizationBasic question: If STRATUM-SPECIFIC DEATH RATES OF THE STANDARD
POPULATION were applied to our study population, HOW MANY
DEATHS WOULD WE EXPECT?
Consequently: How does the OBSERVED NUMBER OF DEATHS COMPARE TO
THE EXPECTED NUMBER OF DEATHS?

	Fictitious chemical factory in Mexico		
Age group	Number of workers	Number of deaths	Mortality
$0-29 \mathrm{yrs}$	1000	1	0,001
$30-59 \mathrm{yrs}$	4000	4	0,001
$60+\mathrm{yrs}$	3000	12	0,004

Standardization

Advantages

- Summarizes stratum-specific rates
- Unconfounded comparison of populations
Popurations

Disadvantages

- Fictitious values
- Value depends on choice of standard

20 years after the American National Health And Nutrition Examination Survey NHANES, 1971-75 Gu et al was trying to find out if there was a difference in mortality between 1971 and 1993 of those claimed themselves diabetic in 1971 compared to the healthy population. The following table shows some of their results:

Male	Diabetic		Non-diabetic	
	Population	Number of death	Population	Number of death
25-44 years	454	10	34461	154
$45-64$ years	1222	60	28412	706
$65-74$ years	1484	157	18189	1371

The standard population of 1990:

Age-group	Population
$25-44$ years	325,000
$45-64$ years	186,000
$65-74$ years	73,000

1. Calculate the standardized mortality of the diabetic population (per thousand)! 2. Calculate the relative mortality risk of the diabetic compared to the non-diabetic population!

A study examined the prevalence of diabetes in two villages (A and B). The result is shown by the table:

	A village		B village	
Age group	Population	No. of diabetic	Population	No. of diabetic
$15-39$	4200	42	500	20
$40-59$	3000	450	600	240
$60+$	1200	300	900	540
Total	$\mathbf{8 4 0 0}$	$\mathbf{7 9 2}$	$\mathbf{2 0 0 0}$	$\mathbf{8 0 0}$

Calculate the prevalence of diabetes in both villages!
Prevalence A:
Prevalence B:
Standardize the data using the following standard population and calculate prevalence again.

Age gorup	Population
$15-39$	6500
$40-59$	5500
$60+$	3000

Standardized prevalence A:
Standardized prevalence B:

A study examined if visiting disco regularly can be an exposition factor for drug-usage. The result is shown by the table:

	Non-visiting population		Regular disco visitors	
Age group	Population	Have ever tried a drug	Population	Have ever tried a drug
$15-20$	25000	525	7750	1248
$21-25$	35000	1190	12250	2217
$26-30$	10000	300	2000	216
$31-35$	10000	200	2000	200
Total	$\mathbf{8 0 0 0 0}$	$\mathbf{2 2 1 5}$	$\mathbf{2 4 0 0 0}$	$\mathbf{3 8 8 1}$

Calculate the prevalence of drug usage in both population!
Prevalence among those not attending disco:
Prevalence among those visiting a disco regularly:
Standardize the data using the following standard population and calculate prevalence again.

Age group	Population
$15-20$	71000
$21-25$	76000
$26-30$	86000
$31-35$	88000

Standardized prevalence among those not attending disco:
Standardized prevalence among those visiting a disco regularly:

The following table presents the mortality rate of two villages (A and B).

	A village		B village	
Age group	Population	No. of death	Age group	No. of death
$18-35$	20000	40	12000	36
$36-65$	40000	300	30000	300
$66+$	24000	1200	20000	800
Total	$\mathbf{8 4 0 0 0}$	$\mathbf{1 5 4 0}$	$\mathbf{6 2 0 0 0}$	$\mathbf{1 1 3 6}$

Calculate the crude mortality in both villages!
Mortality A:
Mortality B:
Standardize the data using the following standard population and calculate mortality again.

Age group	Population
$18-35$	65000
$36-65$	55000
$66+$	30000

Standardized Mortality A:
Standardized Mortality B:

Topics suggested for students' oral presentations:

1. Demographic situation in my home country, birth, death rates and age-sex pyramid
2. Migration, related problems and changing population in my home country

[^0]: $\underline{K S H}=$ Hungarian Central Statistical Office

